
Abstract
The comparison of spatial patterns is recognized as an
important task in landscape ecology especially when spatially
explicit simulation modeling or remote sensing is applied.
Yet, there is no agreed procedure for doing that, probably
because different problems require different algorithms. We
explored a variety of existing algorithms and modified some
of them to compare grid-based maps with categorical attrib-
utes. A new algorithm based on the “expanding window”
approach was developed and compared to other known
algorithms. The goal was to offer simple and flexible proce-
dures for comparing spatial patterns in grid based maps that
do not take into consideration object shapes and sizes of
the maps. The difference between maps was characterized
by three values: quantity, location, and distance between
corresponding categories in the maps. Combinations of these
indices work as good criteria to quantify differences between
maps. A web-based survey was set up, in which participants
were asked to grade the similarity of ten pairs of maps. These
results were then used to compare how well the various
algorithms can perform relative to the visual comparisons
obtained; they were also used to calibrate existing algorithms.

Introduction
Overview
Analysis of spatial information and data frequently requires
comparisons of spatial patterns. Several data structures are
available for processing spatial information (raster, vector,
or hybrid approaches). The grid-based approach seems to be
the most frequent choice (Seppelt and Voinov, 2003), espe-
cially when spatially explicit simulation models are
involved, and we need to compare, model output to spa-
tially referenced data. Algorithms are essential that can
measure the difference between two maps for assessing the
similarity between the output and a data map (Borenstein,
1998). However, there do not seem to exist any agreed
universal procedures for doing that, especially when categor-
ical maps are to be compared.
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For categorical information (such as land-use of soil types
or vegetation classification), the simplest way to do such a
comparison is to run a cell-by-cell match to get the total
number of matching cells. With this comparison, small spatial
differences are treated in the same way as the large ones:
even if there is a matching cell right near by, it will not
be recognized by the algorithm, and will not be taken into
account, no matter how important it would be for a quality fit
estimate of the model. A good algorithm should access errors
for small drifts less than for farther shifts (Pontius, 2002). An
example that demonstrates this problem is the comparison of
two chessboard patterns that are shifted by one cell. The cell-
by-cell algorithm will give zero agreement, since there is not
a single cell from the first map that will match a cell from the
other one. Yet, if one looks at these maps, there will be an
obvious similarity that we would not want to ignore.

Visual comparison of maps is quite fast and efficient.
Human perception works very well in choosing the most
appropriate scale for the comparison. The whole picture is
quickly recognized and differences and similarities identi-
fied, both when cells are substituted or moved, or if only
some values are changed. The problem is that a visual
comparison does not establish a quantitative ranking. Also,
it is hard to depend on visual comparisons if we need to
compare dozens or hundreds of maps, as in some optimiza-
tion tasks that are often necessary for model calibration.
Quantitative algorithms are essential, but it is also important
that they retain some of the features of qualitative compari-
son that we find so useful in quick analysis or eyeballing.

Recent State of the Art
Most of the existing comparison algorithms like the Chi Square
Test, Cramer’s V, or Kendall’s Tau (Everitt, 1977) are based on
a variety of statistical procedures applied to the total numbers
of cells in different categories. These are quite straightforward
procedures, but unfortunately they take into account no
information about the spatial pattern (Pontius, 2001; 2002). For
example, if two groups of cells in one map trade places in the
other map, the total count of correctly classified cells may still
be the same, and cell-by-cell algorithms will not recognize any
difference in the map comparisons.

One of the most well-known measures for map compari-
sons is the Kappa (Cohen, 1960). It is an index for compari-
son based on statistics calculated for the so-called error
matrix (Congalton, 1993; Stehmann, 1996): a quantification
of matches and mismatches in different cells. Pontius (2000)
suggested several modifications to the Kappa algorithms that
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TABLE 1. GENERAL NOTATIONS

a1i, a2i numbers of cells with category i in Map 1, and Map 2
Er non-euclidean distance between corresponding cells 

in the compared maps
F3 index for the moving window with a fixed window 

size of w � 3
Fcbc index for the cell-by-cell comparison (fit for location)
Fd index for the distance measure (different calculation 

in comparison to Fdd)
Fdd index for the distance measure (different calculation 

in comparison to Fd)
Few index for the expanding window
Foall index for the overall comparison (fit for quantity)
Ft index for an integrated value for the moving window
Fw index for the moving window with window size w
i, j the current category in Map 1, and Map 2
k weighting factor for Ft
Mj sum of the cells in category j in Map 2
N the total number of cells in the map
Ni sum of the cells in category i in Map 1
Nid the number of direct matched cells in two maps
Nij number of cells that changed from category i in Map 1 

to category j in Map 2
Np correct fit, if classification is perfect
ns number of cells in the calculated window s
q total number of categories
Q1 expected proportion correct due to chance
s number of the window of one window size
tw number of windows with window size w
w window size
W weighting factor of the expanding window
x, y coordinates for a cell in the map

should distinguish between the error due to differences in
the categories count (quantification error) and the error in
spatial pattern misrepresentation (location error).

Equivalent to the Kappa statistics, Hagen (2003) created
another indicator, KFuzzy, in which he used the fuzzy set
theory to consider fuzziness of location and fuzziness of
category for map comparison.

Another way to compare maps is based on the landscape
pattern metrics (Riitters et al., 1995). These are indices that
describe different patterns for each category in a map. The
indices for different maps are compared with each other to
quantify the difference between two maps.

Turner and Costanza (1989) compared the spatial pattern
analyses with the multiple resolution of “goodness of fit.”
The landscape pattern metrics is quite sensitive to the spatial
pattern statistics, but it does not capture the location of the
compared cells, therefore, potentially leading to confusing
results, if we are more concerned with the location, rather
than the pattern of change.

To account for the location of the mismatching cells,
Costanza (1989) developed an algorithm that performs map
comparisons over several resolutions. The algorithm scans the
maps using a window, for which size is gradually increased.
For each window size, a metric is calculated to compare the
cells in the windows. These comparisons are then integrated
across the whole map area and over multiple window sizes.
Instead of using a moving window, Kok (2001) used two
different resolutions of the project area to compare the
simulation results with real data. This is equivalent to the
moving window, but using only two fixed window sizes.

With the variety of these methods, it is not quite clear
what are the benefits for particular applications, and how we
should choose the right approach. In this paper, we compare
a variety of existing algorithms to improve our understanding
of how they perform and why they sometimes produce quite
different results. We focus on comparing grid maps that
contain different categories, with different category counts
and arranged in various patterns. We also introduce yet
another algorithm that we found computationally simpler
and more flexible for modifications, than some of the other
known algorithms. In attempt to generate a baseline compari-
son, we have performed a web-survey of nearly 100 partici-
pants who were asked to perform visual map fitting. The
results of these visual comparisons were then compared to
the results calculated by the quantitative methods.

Methods
Characteristic Values for Map Comparison
For a full characterization of a fit between two maps, one
can distinguish between three different types of map mis-
matches characterized by:

1. The number of cells that changed from one category to
another (quantity fit);

2. The number of cells that kept the category but changed
location from one map to another (location fit);

3. The distance between the locations of these matching cells
in the maps.

Pontius (2000) presented the first two characteristic
values as agreement due to quantity and agreement due to
location and in his later works (Pontius, 2002; Pontius et al.,
2004); he defined the distance characteristic. In the follow-
ing, different indices, Fi, for comparing grid-based maps
with categorical information are considered. In general, if
the value of the function F is close to 1, the compared maps
match well; if F is close to 0, the maps are totally different.
Table 1 summarizes all notations in this paper.

Cell-by-cell Method
The most straightforward method of comparing two maps is
to compute the cell-by-cell comparison that takes a cell in
the first map (for example the model result) and matches it
with the corresponding cell in the second map, (for exam-
ple, the reference map with data). The count of a fit is 1,
and a misfit counts as 0. The number of matched cells Nid
divided by the total number of cells N gives a simple index:

(1)

We may want to account for some more information
about the types of mismatches observed and generate the so-
called error matrix in Figure 1 (Congalton, 1993; Stehman,
1996). Here we assume categories of Map 1 in columns and

Fcbc � Nid/N.

Figure 1. Error-Matrix for two compared maps: the
categories of Map 1 in columns and categories of Map 2
in rows. Each element nij in the error matrix is the
number of cells in category i in Map 1 and in category j
in Map 2. Ni and Mj are the sums over the rows and
columns, respectively.
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categories of Map 2 in rows, then each element Nij in the
error matrix will present the number of cells that is in
category i in Map 1 and in category j in Map 2; Ni and Mj
are the sums of rows or columns, respectively.

Obviously the diagonal elements in this matrix will
present the number of cells that are in the same category in

both maps, and because of this approach is
similar to Equation:

where q is the number of categories on both maps, and Fcbc
is the index for cells with the same category placed at the
same location in the two maps.

Overall Comparison
Another straightforward technique to compare maps is an
overall comparison. This is the sum of the differences of the
number of cells in each category. This is the disagreement
due to differences in quantity of the categories (Pontius,
2002). The index gives the number of cells that do not
change location but change the category:

(2)

where a1i, a2i are the numbers of cells with category i in
Map 1 and Map 2, respectively.
The difference between Foall and Fcbc estimates the number
of cells that changed location.

Distance Index
The third characteristic value is the distance measure that
tells us how far apart in space the disagreeing cells are. This
index was not estimated previously; neither of the methods
based on the error matrix can be used to calculate it. In the
course of the paper, we will offer an algorithm that can
calculate and take into account the distance Er for each
misplaced cell. There may be different ways to estimate the
distance, for example, Er � min(|xr � x|, |yr � y|). (xr, yr)
are the coordinates of the r th cell in Map 1, (x, y) are the
coordinates of the cell with the same category in Map 2 that
is the closest to the cell (xr, yr). In other words, Er is the
nearest distance (vertical, horizontal, or diagonal) to the cell in
Map 1 where we find a matching category. An overall estimate
for the distance measure could then be a metric based on:

(3)

or based on the average of all the distances:

(4)

For a perfect fit Fd � 1, for the chessboard example Fd � 0.5
(as well as Fdd), since the matching cell is always found in
the first next cell on the other map. Furthermore, we will
use Equation 4 for the distance index.

Kappa
The error matrix (Figure 1) is used to define the well-
known kappa index. This widely-used index has become
almost standard in the remote sensing community (Cohen,
1960; Bishop et al., 1975; Pontius, 1994). In calculating this
index, we attempt to compensate for the “chance agree-
ment” in the comparison and describe the index of agree-
ment as the ratio of the observed accordance minus the
probable accordance and the difference of maximum accor-

Fdd �
N

N � a
r

Er

.

Fd �
1

1 � max
r

(Er)
,

Foall � 1 �
1
Na

q

i�1
0a1i � a2i 0 ,

Fcbc �
Nid

N
�
a
q

i�1
 Nii

N
,

Nid � a
q

i�1
Nii

dance minus probable accordance as proposed by Pontius
(2000). Fk is defined by

(5)

(6)

(7)

In terms of the error matrix, the observed accordance is Fcbc
(Equation 1). Manipulating the numbers in the error matrix,
we can generate some other indices for map comparison.
Also used in defining these indices is the so-called contin-
gency table, which is similar to the error matrix, but with
elements divided by the total number of cells N.

Pontius (2000) presents an equation for Kno that is
similar to F0 in Equation 8:

(8)

The value for Nc is 1. In Equations 5 and 6, we reward a fit
that is achieved for more categories, and penalize a fit that
has the same value of matches but for a lower number of
categories available. This F0 is not what is actually called
the standard Kappa index, which uses some sort of a
distribution for the probable accordance.

Pontius (2000) modified Kappa trying to distinguish
between the quantity error and the location error. He noted
that the error in spatial location (pattern) can be independ-
ent of the error in the quantity of category matching. The
calculation of Kappa is based on the maximum value for
the proportion correct, Nc � 1, if the classification is per-
fect (Equations 5, 6, and 7). However, he argued that in
certain cases, we might be concerned with matching only
the quantity of the fits, or only the location of the fits. In
those cases instead of using Nc � 1 for the maximal fit
in (2), we may use values smaller than that, specifically

(9)

which Pontius (2000) used to define the so-called Flocation
index that is defined as the “success due to the simulation’s
ability to specify location divided by the maximum possible
success due to a simulation’s ability to specify location
perfectly”:

(10)

It should be noted however, that this jargon may be some-
what misleading, since just like with all other Kappa meas-
ures it is still based only on the error matrix, which means
that we still do not have the information about where exactly
in the maps the differences are located.

For example, on the chessboard comparison, F0 � FK
� Flocation � �1, indicating that there is nothing similar about
the maps, whereas visually we may still find them quite
identical. Or similarly, in the example considered below in
Figure 2, the error map is the same for both maps, and therefore
all the indices based on the error matrix will be also the same,
while one comparison should probably be graded higher.

Multiple Resolution Methods
Moving Window Approach
The problem with Kappa and its modifications is that it is
entirely based on the cell-by-cell statistics. Maps that have a
bias or have similar patterns, but slightly distorted or mis-
registered, may not agree well (Verbyla and Hammond,
1995). Costanza (1989) created an algorithm that goes

Flocation �
Fcbc � Q1

Nc2 � Q1
.

Nc2 � a
q

i�1
min(Mi,Ni),

F0 �
Fcbc � 1/q

Nc � 1/q
.

Nc � 1.

Q1 � a
q

i�1
Ni

# Mi/N
2, and

Fk �
Fcbc � Q1

Nc � Q1

, with
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Figure 2. The numbers of black cells in (a) Map A and
(b) Map B are the same. If we compare these maps to
a map entirely in grey using the sliding window algo-
rithm, the results are different.

beyond the cell-by-cell comparison to include the cell
neighborhood being considered. The maps are scanned using
a window of increasing size. With window size 1 � 1, we
prepared the regular cell-by-cell comparison. Then, we take
a window of 2 � 2 cells and again scan the whole map.
For each location, we calculate an index that is based on
the difference between the total numbers of cells in each
category in the window. If the two windows are identical,
this difference is zero. The more mismatches we find, the
larger this index. The window is then increased and the
maps are scanned again. As the window size grows, the
granularity of the maps gets blurred, and eventually we get a
perfect fit assuming that the numbers of cells in the same
category is the same for the whole area. The index for the
moving window is calculated as:

(11)

where tw is the number of windows of window size w that is
necessary to cover the whole map, and a1i and a2i are the
number of cells in Map 1 and Map 2, respectively, for
category i in the searched window. The graph of Fw(w) is a
steadily increasing function that gives some idea about the
three characteristic values for the comparison (quantity,
location, distance). The initial value (for w � 1) is the Fcbc
index (location is similar on both maps), and the maximum
value (for the maximal w, that covered the whole map) is the
Foall index (quantity is similar in both maps). The pattern of
the slope is a proxy of the distance. The place where the
curve starts to slope (with respect to the w value) describes
the distance between cells that changed location, and the
steepness of the slope represents the number of cells that
changed the location. So, if the graph curves up quickly with
w, we would reason that the spatial shifts between the maps
are quite minor, and there is a good fit. If the graph goes up
only for large w, we can say that even though there might be
a good overall comparison, the spatial match is quite poor.

For a comparison with the previously introduced
indices, this function needs to be aggregated to a single
value. Costanza (1989) proposes

(12)Ft �
a
n

w�1
Fwe�k(w�1)

a
n

w�1
e�k(w�1)

,

Fw �
1
tw

 a
tw

s�1
D1 �

a
p

i�1
0a1i � a2i 0

2w2  T

which assigns an exponentially decreasing weight to the
comparisons performed at lower resolutions; n is the total
number of cells in the map, and k is a penalty coefficient.
This algorithm makes use of a multi-scale comparison
approach, which makes them distinct from all other map
comparison indices introduced above. However, there are a
couple of related problems.

Increasing the window size makes the number of “no-
data” values a sensitive parameter in map comparison. If we
consider “no-data” as another category, we may considerably
distort the result, since there may be a large number of cells
in this category that we will be matching. If “no-data” are
ignored, we get windows along the boundaries of the study
area that will have different numbers of active cells. To
avoid this problem, it makes sense to replace Equation 11 by
another formulae that ignores the “no-data” cells:

(13)

Here, ns is the number of cells in the window with data.
The boundary effects still show in the comparison results.
Consider, for example, a comparison with the window size
of 3 � 3. Suppose in one case, two corresponding windows
will contain nine cells of different categories, whereas a
different pair of windows at a different location, but with
the same size of this comparison, will contain only one cell
with a category value and eight no data values. In this latter
case if this one cell is changed, the fit for the window
changes by 100 percent. In contrast, in the former case, the
change in one cell influences the fit for the window by only
11 percent. In the equation, the weighting of these windows
is the same, but in reality they should be quite different.

In addition, the shape of the window causes unintended
behavior for the distance measure. While scanning the map
with the window, it would be best if we could look at each
cell the same numbers of times. However, this does not
happen, and the cells on the edge of the map are considered
less often than the cells in the center (Figure 3). As a

Fw �
1
tw
a
tw

s�1
D1 �

a
p

i�1
0a1i � a2i 0

2ns
 T.

Figure 3. Cells in the middle and the cells at the edge
get different consideration in the moving window algo-
rithm. Independent of the window size w the cell in the
corner gets noticed only once (A 1 and B 1). The cell in
the middle will be considered once for window size w � 1,
four times for window size w � 2 (A 2–5) and nine times
for window size w � 3 (B 1–9), and so on. The number
of hits will decrease for larger window sizes.
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result a changed cell will be considered nine times with a
3 � 3 window, because it is a middle cell, and another not-
changed cell will get considered only once, because it is a
corner cell. This asymmetry may have a substantial effect on
the result of the comparison.

Let us illustrate this problem with the following exam-
ple. Suppose we have two grid maps and each of the maps
is square (20 � 20 cells). The comparison is made for two
categories (black and gray). One map has black cells on the
edge (Figure 2a), and one map has black cells in the middle
(Figure 2b). The number of black cells is equal in both
maps. We compare each of these two maps with a map that
contains only gray cells. It is interesting to watch how the
Fw value changes as we increase the size of the window
(Figure 4). Contrary to our expectations that we should be
getting a higher value, the larger the window we use to scan
the maps, we see that the index follows a different pattern.
In some cases it first grows, then drops, in other cases, the
opposite. Just as in the Figure 3 example, the algorithm is
more influenced by the cells in the middle of the maps
than on the periphery. If there is a similarity of cells in the
middle and differences of the cells at the edge, the result
will be overestimated, and vice versa (Figure 4). Still, the
resulting index Ft seems to capture the difference pretty well
(unlike the Kappa test, which is actually zero for both
maps): for Map A, Ft � 0.81, for Map B, Ft � 0.48.

Expanding Window Approach
Based on the results of this analysis for the moving window
comparison, we developed another algorithm that attempts
to merge the simplicity of a cell-by-cell comparison with the
multiple resolution comparison following the idea of the
nearest neighborhood analysis (Burt and Barber, 1996).

The algorithm starts with the cell-by-cell comparison,
and in case of a misfit, expands the search to a series of
concentric layers around the cell in the second map. A
match of two corresponding cells in both maps (same

category at the same location) will add a one to the similar-
ity count. A match found in one of the layers adds a W�(0,1)
to the similarity count, in which W is a weighting factor that
is a constant for each comparison. If there are more than one
match in the layers, the count will be incremented only
once per layer and only for the nearest layer. The fit for the
entire map is the sum of all weighted matches estimated for
each cell:

(14)

where Er is one of the characteristic values, the distance that
we introduced previously. The smaller the value of W is
applied, the higher the penalty for finding a distant match
(Figure 5). It should be noted that this algorithm is not
symmetric. F(a,b) does not equal F(b,a), where a and b are
the two maps. For example, comparing Map 1 to Map 2
in Figure 6 the sum of the weighting points is equal to 8
(Few � 0.89). The other way round, starting with Map 2, we
get 8.5 weighting points (Few � 0.94).

Few (a,b) �
1
Na

N

r�1
WEr

Figure 4. The result of the comparison of the maps in
Figure 2. The solid line shows the comparison of Map A
with a grey map (first comparison), and the broken line
is the comparison of Map B with a grey map (second
comparison). For intermediate window sizes, the cells in
the middle matter more than the cells at the edge. In
the first comparison, the cells in the middle are not
changed and the fit is improved. The index for the
second comparison shows a drop and then an increase,
because the mismatching cells are in the middle.

Figure 5. Example for a comparison using the expand-
ing window algorithm: for cell (1,1) with category 1: the
maps are identical -� add W0 � 1 to the index; for cell
(2,1) with categories 2 and 4: the match is in the first
layer -� add W1 � W (�1) to the index; for cell (3,1)
in the Map 1 -to- Map 2 comparison the match is in the
second layer add W2 (�W) to the index, and in the Map
2 -to- Map 1 comparison, the match is in the first layer
-� add W1 (�W) to the index.

Figure 6. The map comparison with the expanding
window algorithm is asymmetric. Comparing Map 1 to
Map 2 may produce a different result from comparing
Map 2 to Map 1.
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To achieve symmetry we do both comparisons, and then
take the average:

This algorithm does not assume any special window pattern
and does not depend upon the shape of the analyzed area.
In this case, we do not have to go beyond the study area, we
are only searching the data values for a matching cell.

The results of comparison depend on an arbitrarily
chosen weight W. For example, in the chessboard compari-
son for a factor of W � 0.5, the result of the comparison is
0.5. If W � 1 the result is 1, which is probably not exactly
right, since there is definitely a difference between the two
patterns. We suggest that W is used as a calibration parame-
ter that might be different for different applications.

Applying this method to the example in Figure 2, we
find that Few(Map A) � 0.71, and Few(Map B) � 0.69.
Though again the A comparison gets a higher grade than the
B one; the difference between them is no longer as dramatic
as in the moving window where the edge effect exaggerated
the difference. This result can be easily interpreted if we
remember that the Few index is a measure of the distance
between similar cells in the two maps: indeed, in Map A
there is always a shorter distance to the next gray cell (�3)
than in Map B (the distance is greater for the cells in the
middle of the black zone in the center): the algorithm
detects this. Clearly in real life applications, it is unlikely
that we will be comparing such special map designs,
however these simple test examples proved to be very useful
to understand how different methods work, and what to
expect from them in certain extreme situations.

Coupled Indices
To couple the three characteristic values, we can derive an
index based on a weighted sum of the quantity, location,
and distance measures. We use Foall, Fcbc, and Fd as charac-
teristic values of a comparison, and a full characterization of
a fit could be then built as a combination of these three
indicators:

(15)

Here 	i are weight factors, 0 � 	i � 1, 	1 � 	2 � 	3 � 1 that
can be used to assign a higher value to the quantity, loca-
tion, or distance indicator. With the Ffull index there are two
	i parameters that need be defined in a calibration proce-
dure. We have tried to perform this calibration using a
visual comparison of a set of maps as a baseline. To achieve
this baseline, we have set up an Internet survey, where a set
of several pairs of maps was offered for comparison. The
above-mentioned algorithms were then applied to calculate
the map comparison indices over the same set of maps. All
the algorithms were programmed as User Code functions
within the open source Spatial Modeling Environment (SME)
package (Maxwell and Costanza, 1997; Voinov et al., 1999).

Internet Survey
Experimental Set-up
For the survey we used maps that contain five different
land-use categories presented by five different colors. The
first survey1 contained ten pairs of maps that are shown in
Figure 7. There were five pairs of maps generated by
simulation runs (Figure 7: Numbers 1, 3, 7, 9, and 10) for

Ffull � (l1Foall � l2Fcbc � l3Fd)/3.

Few � (Few(a,b) � Few(b,a))/2.

the Hunting Creek watershed (Seppelt and Voinov, 2003).
They were different only in the quantity of the categories.
Maps in pairs 2, 4, 5, 6, and 8 were put together by hand,
making them different in the location of cells, to trigger all
three characteristic values. The maps in the pairs with
the numbers 4, 5, and 8 (Figure 7) were only different in
location, and maps in two pairs number 2 and 6 (Figure 7)

Figure 7. Pairs of maps offered for comparison in
the Internet survey.

1The survey can be accessed at http://www.likbez.com/
AV/Maps/ (last date accessed: 20 April 2005).
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Figure 8. Distribution of the grading for each of the
ten pairs of maps that were compared during the
survey: (a) Pair 1, (b) Pair 2, (c) Pair 3, (d) Pair 4, 
(e) Pair 5, (f) Pair 6, (g) Pair 7, (h) Pair 8, (i) Pair 9,
and (j) Pair 10.

were different in quantity and location. The second survey
contained ten comparisons, five of them were similar to the
ones in the first survey (1, 3, 7, 9, and 10 maps in Figure 7).
The second survey contained only comparisons that are
different in the number of cells in the same categories, but
not in location. The experimental setup was the same as in
the first survey.
Participants in the test were asked to rank each comparison
with a value between 0 and 1 with increments of 0.1.

Results and Discussion
In total, 186 forms were submitted from students and
scientists (two independent groups of about the same size
for the two surveys). This provided us a good sampling of
how human perception works for the comparison. We used
the results of the survey to compare them with the results of
the different algorithms of map comparison described above.

Figure 8 presents the distribution of scores that were
obtained for each of the compared pairs of maps. The graphs
do not offer a clear Gaussian distribution; most of the
distributions have more than one local maximum. However,
the global maximum is quite well-pronounced showing that
in general, there is some agreement between the respon-

dents. To make sure that this is not a random effect, we
have conducted a second independent survey with a dif-
ferent group of respondents. Figure 9 shows the same trends
in the curves, and the maxima are in similar places. Very
likely, we are detecting some real phenomena related to the
human perception of the maps. Perhaps some respondents
may be attaching a larger weight to background compar-
isons, while others may value different colors differently,
or think that certain patterns or clusters are more important.
All these aspects may influence the results of the test.
This is clearly an interesting topic for further analysis,
however it is beyond the scope of this paper. For now, it
was important to conclude that there is a clear preference
in people’s judgment that we can use for further reference.
We used the result of the first survey to determine if some
agreement is possible between the algorithmic methods and
the visual comparisons presented by the higher peak in the
distributions.

We used the following indices for the comparison study.
The moving window was represented by the integrated value
Ft (with k � 0.1), and for the expanding window, we used a
weighting factor of W � 0.5. In addition to these two algo-
rithms, we correlated Fcbc, Foall, FK, FLocation, and F3 with the
survey. F3 stands for Fw with w � 3. The window size of
3 � 3 was chosen to test the impact of small changes in
location upon the overall comparison. The results show
that the F3 index seems to match very well with the visual
comparisons obtained in the survey, which leads to a hypoth-
esis that the window of size 3 � 3 is what people normally
employ in making the judgment about maps similarity.

The scatter plots in Figure 10 show the relationship
between the survey and the different algorithms. The rela-
tionship between the Kappa values and the survey seems to
be quite random, while the distribution for the other indices

Figure 9. The comparison of the results in two independ-
ent surveys (grey the first, and black the second
survey). The numbers of the comparisons correspond to
the numbers in Figure 7 and Figure 8. (a) Pair 1, (b)
Pair 3, (c) Pair 7, (d) Pair 9, and (e) Pair 10.

03-014.qxd  1/13/04  10:51 AM  Page 981



982 Augu s t 2005 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TABLE 2. INDICES OF MAP COMPARISONS CALCULATED BY DIFFERENT

METHODS

Comparison 1 2 3 4 5 6 7 8 9 10

Fcbc (cell 0.75 0.61 0.91 0.87 0.68 0.81 0.32 0.62 0.56 0.85
by cell)

Foall (overall) 0.75 0.94 0.91 1.00 1.00 0.96 0.32 1.00 0.56 0.85
Ft 0.75 0.91 0.91 0.99 0.92 0.94 0.32 0.95 0.56 0.85
F3 0.74 0.77 0.92 0.93 0.67 0.89 0.33 0.76 0.57 0.84
Few(W � 0.5) 0.81 0.78 0.95 0.93 0.77 0.88 0.50 0.78 0.75 0.89
FK 0.27 0.15 0.81 0.69 0.33 0.53 0.11 0.19 0.33 0.5
Flocation 0.96 0.17 0.99 0.69 0.33 0.59 0.99 0.19 0.99 1
Survey 0.39 0.40 0.61 0.73 0.28 0.48 0.22 0.36 0.29 0.45

Note: The cell-by-cell-comparison compares the two maps cell
by cell, the overall gives the sum of the difference between the
numbers of cells in each category in the two maps. Ft is the
integrated result for the moving window and F3 is the value for the
moving window, using only window size of three. Few(W � 0.5) is
the value for the expanding window calculated with the weighting
factor W � 0.5. FK and Flocation are Kappa (Cohen, 1960) and Kappa
of location (Pontius, 2000), respectively.

not distinguish between a direct match and a match over a
distance of 3 cells.

The results of the survey were used to calibrate the
algorithms, assuming that the survey is the correct compari-
son. For example, for the expanding window the weighting
factor W was calibrated. We ran the algorithm with ten
different weighting factors in steps of 0.1 from 0.1 to 1.0.
Table 4 presents the correlations with the survey that were
produced; based on these results, we may assume that the
best weighting factor is W � 0.3.

Figure 10. The scatterplots show the different relation-
ships between the algorithms and the survey: (a) and
(b) are the cell-by-cell and the overall comparison, (c)
and (d) the moving window value (Ft) and the moving
window with fixed window size 3 � 3 (F3), and (e)
and (f) are the Kappa for location and Kappa standard.
The number of the points constitutes the corresponding
pair in Figure 7.

Figure 11. The survey results (n � 93) and the values for
the quantity (Fcbc) and location (Foall) indices. The results
of the survey are consistently lower than the indices for
changes in quantity and location. The standard deviations
in all comparisons are 20 to 26 percent.

Figure 12. Comparison of the expanding window (Few)
and moving window (F3) algorithms with the survey
results. Few,m and F3,m are similar to Ft and F3, but
shifted down for a better match with the survey.

TABLE 3. THE CORRELATION OF EACH METHOD WITH THE SURVEY RESULTS

Fcbc Foall Ft Few F3 Fint FK Flocation

Correlation 0.822 0.565 0.820 0.826 0.845 0.577 0.844 0.090

Note: Ft is the integrated value for the moving window with k
� 0.1, for the expanding window we used the weighting factor of
0.5. F3 is the result of the moving window using only window size
w � 3. Fint is the integral index of the expanding window divided
by the result for a perfect match.

are closer to a straight line, meaning that there are better
correlations between the comparisons.

The results of all map comparisons are presented in
Table 2. The average values from the survey turned out to
be lower than the values from all methods (Table 2 and
Figure 11). Figure 12 shows the comparison of the expand-
ing window and the moving window with a fixed window
size w � 3. These two techniques have beside kappa the
best correlation with the survey (Table 3). The F3 index does
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Finally, we used the survey results to calibrate the 	I
weight coefficients for the characteristic values by minimiz-
ing the error between the survey results and the coupled
index Ffull:

with the constraints 0 � 	i � 1, 	1 � 	2 � 	3 � 1. The result
of a global optimization was 	1 � 0.85, 	2 � 0 and 	3 � 0.15.
The correlation between the linear combination of the
combined distance measures and the survey results was R2

� 0.66. Apparently with the visual comparison, what matters
most is the estimate of total number of cells in the same
category. We do not know how people interpret the count by
simply looking at the map, but it appears that humans are
pretty good at that judgement. The loecation of change per se
does not seem to matter at all; however, the distance of the
shift between cells that moved to a different location does
matter. As one would expect, it does not matter where on
the map the cells got shifted. As long as they did not get too
far apart, the fit stands. The fact that the F3 index works so
well also speaks in favor of this assumption.

Conclusions
The differences between two categorical grid maps can be
characterized by three values: the quantity of the categories
in the two maps, the location of the mismatched categories,
and the distance between two corresponding cells that
changed location. There are a number of analytical methods
available for map comparisons, however, there is little
understanding about how to compare these methods among
themselves and what are the advantages and drawbacks of
each method.

A web-based survey was an attempt to create some kind
of a reference index. The human eyes seem to be quite good
in finding similarities and differences, but humans often fail
in assigning a number to their comparison results. Assuming
that the survey value is the “correct” value for the compari-
son, we have derived a criterion to compare the algorithms.

The traditional Kappa techniques worked very well
when pattern and location of change was not involved
(Figure 7: Numbers 1, 3, 7, 9, and 10), because it is based on
the error matrix, and these data are detached from the
correct locations of the grid cells. Only the calculation of
direct matches (Fcbc) and the number of mismatches are
taken into account, but not the distance between correspon-
ding cells that changed location. This is a disadvantage
compared to the other discussed algorithms. However, the
values in the moving and the expanding windows showed
about the same correlation with the survey that the Kappa
test (Table 2). The moving window algorithm worked very
well except for some special cases.

The expanding window algorithm circumvents the
problem of the edge effect. The algorithm can search for
similarities independent of the area or pattern of the map.
The flexibility of the algorithm makes it a useful tool in
map comparison. The variable weighting factor allows the
user to adjust it for specific questions of map comparison,
but for the presented comparisons it did not produce the

F̂

F̂ � a
1,p , 10

1l1Fcbc � l2Foall � l3Fd � Fsurvey22 ¡ min!

correlation significantly better than for of Kappa. Appar-
ently this is because the distances between cells in different
location in the survey were quite small. The longest distance
is chosen for the fifth comparison (14 cells) and only the
eighth comparison has another distance longer than 2 cells
(6 cells). The survey turned out to be poorly designed to
account for the location changes. Nevertheless, is the survey
a good hint of the functionality of the algorithms.

The best correlation with the survey came from the
moving window with fixed window size of w � 3, which
makes us think that human perception penalizes small
changes less than changes over long distances.

The Internet survey will stay on-line at http://www.
likbez.com/AV/Maps, and hopefully generate more compari-
son results from our readers. This may help us identify more
important factors in the comparisons and improve our
quantitative methods in the future.
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