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ABSTRACT
The paper demonstrates two issues; (i) how a ‘moving window approach’, 
that translates pixel level detected changes to landscape level, can be 
implemented; (ii) how the approach can overcome the limitations of pixel 
level change information to characterize change over large areas. First we 
detected changes from two periods (1986 and 2010) of LULC maps. On the 
pixel-based changes, we ran focal statistics summation operator separately 
for selected window sizes (1–10 km). Further, we assessed effect of scale in 
depicting the pattern and amount of change. The approach is found useful to 
overcome major shortfalls of pixel-based change characterization. However, 
varying scale of analysis provide varying amount of change and differently 
represent change patterns. Thus, implementing the approach over complex 
and large areas requires multi-scale approach. Subdividing complex and 
large areas into homogeneous zones can help to implement the multi-scale 
approach and facilitate the selection of appropriate scale of analysis.

1.  Introduction

Understanding and estimating processes of land use and land cover (LULC) change remains a major 
task on the global research agendas of geographers and geospatial scientists (Turner et al. 2007; Gong 
et al. 2013; Singh, Laari et al. 2017). Despite the great significance that spatially explicit information 
about LULC change has for land use decision-making, such information is frequently still lacking for 
the required periods, at the required level of detail and spatial extent (Herold et al. 2008). As a result, 
it has been difficult for local, regional and national actors to take proactive decisions on land use. The 
advent of remote sensing and geospatial science in the 1970s has improved knowledge about land 
change, and many challenges have been addressed (Usman et al. 2015; Singh, Laari et al. 2017). But 
there are still constraints to efficient use of the benefits that remote sensing technology has provided, 
particularly when it comes to characterizing and assessing land change processes at global, continental, 
national and regional scales (Verburg et al. 2011). In the case of land change assessments based on 
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satellite imagery, two categories of challenges still impair proper documentation and characterization 
of land change across large and complex areas. The first category is related to satellite data and includes 
(1) quality issues (cloud cover, noise and resolution) and (2) availability and accessibility issues (Herold 
et al. 2008; Gong et al. 2013). The second category is related to methodology and includes (1) produc-
ing multi-temporal LULC maps across large and complex areas (Chen et al. 2015; Kassawmar et al. 
2016) and (2) detecting, mapping and characterizing change across large and complex areas (Verburg 
et al. 2011; Chen et al. 2015). Researchers in the field have been striving to tackle these challenges 
and harness the advantages of remote sensing technology to document land change processes at the 
required scales (Verburg et al. 2011).

Since the inception of remote sensing, conventional pixel-based image classification techniques 
(supervised and unsupervised) have remained indispensable in producing multi-temporal LULC 
maps (Riggan and Weih 2009). Conventional change detection techniques like post-classification 
comparison are also still widely used (Pontius and Cheuk 2006). The benefit of such approaches lies 
in their simplicity and their applicability to any available LULC maps irrespective of differences in 
spatial and temporal scales (Pontius and Cheuk 2006; Netzel and Stepinski 2015; Lamine et al. 2017). 
The cross-tabulation matrices resulting from post-classification comparison are particularly helpful 
in improving our understanding of LULC dynamics (Pontius and Cheuk 2006; Teferi et al. 2013). 
However, it has been argued that change information generated at pixel level has several limitations 
when it comes to depicting, characterizing and interpreting land change, especially when the areas of 
interest are large and complex (Rogerson 2002; Gimona and van der Horst 2007; Netzel and Stepinski 
2015). This is mainly because the quality of a change map produced from pixel-level multi-temporal 
LULC maps will suffer from geometric, atmospheric, topographic and radiometric errors in the basic 
satellite images used. Unlike vector-based or object-based approaches, change detection approaches 
based on pixel-level LULC maps and post-classification comparison lead to salt-and-pepper change 
errors in the resulting change maps (Riggan and Weih 2009). Post-classification comparison, in par-
ticular, leads to a compounding salt-and-pepper effect arising from the classification stage (Zhang 
and Tang 2012). For that reason, these techniques should be used with input data that have under-
gone standard correction procedures such as geometric, atmospheric, topographic and radiometric 
correction. Nonetheless, when mapping large and heterogeneous areas, these types of errors in the 
change map are difficult to avoid completely, as standard correction procedures may sometimes also 
result in erroneous change information. In sum, pixel-level change maps are not always appropriate 
to depict and characterize land change across large and heterogeneous areas. They are not sufficiently 
informative, especially for non-experts; and this means that they are inadequate for land use policy 
formulation and decision-making. It has been shown that more useful change maps that better explain 
reality can be generated by analysing several neighbouring pixels (Riitters, Wickham JD et al. 2009). 
Moreover, when looking at large and heterogeneous areas, it is more appropriate to explain land change 
in relative than in discrete/absolute terms.

To overcome the limitations of maps showing changes at pixel level, researchers in the field widely 
use majority filter techniques, which are usually applied separately to each multi-temporal LULC 
map. However, as it is difficult to apply these techniques selectively, they may cause real changes of 
small spatial extent to be removed, or small areas with no change to appear changed. Thus, to be sure 
whether the land represented by a pixel has actually changed, we must also look for possible changes 
occurring in surrounding pixels (Riitters, Wickham J et al. 2009). Indeed, examining the status of 
groups of neighbouring changed pixels over time makes it possible to produce change information 
that is closer to reality than information generated by smoothing the multi-temporal LULC maps 
using a majority filter (Gagn and Fahrig 2007; Riitters, Wickham JD et al. 2009). Other studies have 
also found that to obtain more accurate change information, it is necessary to examine groups of 
changed but neighbouring pixels (Hett et al. 2012). Doing so reduces the risk of reporting erroneous 
change information, provides flexible options for presenting change on a map, and thereby makes it 
possible to produce a meaningful change pattern that closely reflects reality and is easily interpreted 
by non-experts.
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In view of the limitations of pixel-level change maps and the benefits of examining several changed 
pixels within a defined neighbourhood, this study took a neighbourhood approach to mapping and 
characterizing land change across a large and heterogeneous area. A minimum of two LULC maps 
showing the area of interest at different points in time is needed to create a new change map based 
on analysis of pixel-level change information using a neighbourhood approach (Riitters, Wickham 
J et al. 2009). A neighbourhood approach means categorizing similar values and/or configurations 
of changed pixels within a ‘window’ or ‘kernel’ of a defined size. Technically, this can be done by 
applying a moving window tool in ESRI’s ArcGIS® software, which computes and provides various 
metrics (Gustafson 1998); the way in which the tool is applied varies depending on the input data and 
the objective of the study (Griffith 2004; Riitters, Wickham J et al. 2009). The moving window tool 
analyses clusters of neighbouring pixels, and the size of the moving window represents the extent of 
the neighbourhood (Riitters, Wickham JD et al. 2009). Important metrics of land dynamics include, 
among others, amount of change, expressed as the percentage or number of changed pixels per defined 
neighbourhood, and patterns of change, expressed in terms of the spatial arrangement of changed 
pixels. Both can be generated by applying a moving window technique to pixel-level change informa-
tion (Singh, Srivastava et al. 2017). Information about the amount and patterns of change can help to 
explain land change processes in a more meaningful way than pixel-level information can (Gustafson 
1998; Theobald 2010; Lamine et al. 2017). However, outputs produced by means of a neighbourhood 
approach vary with the size of the moving window (Remmel and Csillag 2003; Wu 2004; Šímová and 
Gdulová 2012). This means that choosing an appropriate moving window size is crucial. Therefore, 
proper use of the approach requires close examination of the effect of the moving window size, taking 
into account the spatial resolution of the input data, the purpose of the analysis and the nature of the 
change processes observed.

The overall aim of the present study was to explore the potential and limitations of land change 
information produced at pixel and at neighbourhood level for characterizing land change at regional 
and national scales. Four specific objectives guided our work. The first was to translate pixel-level 
change information to the neighbourhood level using various moving window sizes and to compare 
results obtained with different moving window sizes. The second objective was to examine in detail 
the effect of the moving window size on amounts and patterns of change obtained at neighbourhood 
level. Third, we aimed to measure the magnitude of the effect of the moving window size by verifying 
neighbourhood-level outputs against known changes and identifying factors responsible for the dif-
ferences. Our fourth objective was to select the optimal moving window size for analysis of a specific 
area. Our findings and lessons learned will help to assess the potential and limitations of the approach 
for characterizing land change across large and complex areas.

2.  Materials and methods

2.1.  Study area

In line with the aims of our study, we chose a large and complex study area: the Ethiopian part of the 
Upper Eastern Nile Basin (UENB), which covers 370,000 km2 (Figure 1). The UENB features complex, 
diverse ecoregions with altitudes ranging between 350 and 4540 m above sea level. In relation to the 
types, size and density of land changes occurring in our study area, we identified five major ecoregions 
and nine sub-ecoregions in the UENB, each representing distinct socio-economic and biophysical 
characteristics (e.g. land cover, rainfall regime, farming systems). We defined the boundaries of these 
zones based on an overlay analysis of geospatial data-sets on elevation, climate, population density 
and farming systems. Drivers of landscape transformation, including land administration/land use 
policy, population pressure, long-term degradation, migration and land rehabilitation activities tend 
to be homogeneous within these ecoregions and sub-ecoregions. The ecoregions’ characteristics and 
spatial occurrence are indicated in Table 1 and Figure 1, respectively.
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Figure 1. Ecoregions of the Ethiopian portion of the UENB, its sub-basins and the locations of the study sites.

Table 1. Major ecoregions and sub-ecoregions.

Major ecoregions Sub-ecoregions Codes
Sub-basins in which 

they occur Landscape divides
Forestry- and agrofor-

estry- dominated 
ecoregions

Natural high forest, agroforestry, and 
mosaic of croplands with trees and 
high-rainfall areas

1a Upper Baro-Akobo Highlands

Mixed agricultural 
system (moderately 
cultivated) landscapes

Disturbed forest, artificial forest, mosa-
ic of crops with high trees, high-po-
tential and high-rainfall areas

2a Upper Abay

Mixed agricultural 
system (intensively 
cultivated) ecoregions

Intensively cultivated high-potential 
and high-rainfall areas

3a Upper Abay

Intensively cultivated low-potential 
and moderate-rainfall areas

3b Upper Abay

Intensively cultivated, low-potential, 
and low-rainfall areas

3c Upper Tekeze

Agro-pastoralist system 
(lightly cultivated) 
ecoregions

Lightly cultivated, moderate-potential, 
and low-rainfall lowland areas

4a Lower Tekeze Lowlands

Dominantly pastoralist 
ecoregions 

Wooded and moderate-rainfall 
lowland areas

5a Lower Baro-Akobo

Wooded and low-rainfall lowland 
areas

5b Lower Tekeze

Wooded and high-rainfall lowland 
areas 

5c Lower Abay
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Sub-ecoregions 1a and partly 2a (Figure 1) are dominated by natural high forest and dense woody 
vegetation. Sub-ecoregion 2a comprises complex mosaics of trees mixed with crops such as cereals, 
coffee and banana. Sub-ecoregions 3a–c are dominated by intensively cultivated and degraded land 
comprising scattered shrub and bush vegetation. A conducive agroecological setting has led to very 
intensive agricultural practices in sub-ecoregions 3a, 3b and 2a (Teferi et al. 2013). Sub-ecoregions 
1a, 2a and 5a are considered high-potential areas and comprise disturbed forests. Sub-ecoregions 3b 
and 3c are most degraded, while the lower reaches of the study area (sub-ecoregions 4a, 5b and 5c), 
with lower population densities and less cultivation, are largely covered by woody vegetation (Hurni 
et al. 2005). For the present assessment, we selected four study sites of 100 by 100 km each within the 
UENB that represent the major ecoregions (Figure 1).

2.2.  Data-sets

At least two pixel-level LULC maps were required for our study. We selected two years, 1986 and 
2010, taking into account important change processes in the study area that drive LULC change. Each 
LULC map was produced using 24 scenes of Landsat TM images that partly or fully fell within the 
boundaries of our study area. Due to the influence of the seasonal monsoon rainfalls on the spectral 
behaviour of land features and the availability of cloud- and haze-free satellite data, we chose images 
acquired during the dry months of the year. This also makes it easier to differentiate various land 
features, as most of the annual crops have been harvested at this time of the year (Hurni et al. 2013; 
Teferi et al. 2013). Using Google Earth Engine, we downloaded the best quality available Landsat TM 
products acquired between December and March. Google Earth Engine provides Landsat images 
that have previously undergone all necessary pre-processing steps such as geometric, atmospheric, 
topographic and radiometric correction. Using pre-processed images helps to reduce potential errors 
of image classification and change detection. When producing the two LULC maps, we benefitted 
from existing national- and local-scale LULC datasets (Muluneh and Arnalds 2010), which we used 
as a reference to improve our classification. Other data-sets were also integrated in the classification 
process, including ones on farming systems and livelihood zones produced by FAO, ones on settlement 
and population distribution provided by Ethiopia’s Central Statistical Agency (CSA), and topographic 
information from the ASTER digital elevation model (http://glovis.usgs.gov). They were used to derive 
classification segments, while Google Earth images were used to assign unknown classes and validate 
the classification.

2.3.  Classification approach

As the ecoregions in our study area are extremely heterogeneous, we combined classification approaches 
suggested by Mains et al. (2000) and Crews-Meyer et al. (2004). These approaches aim to reduce the 
effects of landscape heterogeneity on classification accuracy by dividing the image into smaller, more 
heterogeneous segments prior to classification. Image classification and class labelling is then per-
formed within these segments. In addition, we opted for a second-level classification scheme. We first 
defined a set of 10 fairly broad classes, which we refer to as ‘Level I’ classes (water body, settlement, 
forest, woodland, shrub/bushland, cropland, grassland, bare land, wetland, Afroalpine vegetation); in 
a next step, these were differentiated into 40 ‘Level II’ classes. Image classification and class labelling 
was then performed within the previously produced segments by means of unsupervised clustering 
and supervised class labelling techniques, in an iterative procedure. This included the integration of 
several geospatial data-sets and use of local area knowledge. The detailed procedures applied for image 
segmentation, classification and class labelling are explained in Kassawmar et al. (2016).

The resulting two maps (Figure 2) fulfil three important criteria that made them adequate for use 
in our neighbourhood-level change assessment. First, they identify and map important classes that 
essentially represent the complex landscape of the study area with an overall average accuracy >87% for 
all classes considered in the classification scheme. Given the size and heterogeneity of the study area, 
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this level of accuracy is very good. Second, the two maps were produced from images obtained from 
the same sensor (Landsat TM) and with the same spatial resolution (30 m). Third, both maps were 
produced exclusively from images acquired during the dry season, which ensures seasonal consistency. 
Moreover, as the two LULC maps were produced by the same experts with the aim of using them for 
change detection, consistency was also maintained in terms of terminology, method of classification 
and the type as well as the number of classes detected – which is an important issue in using landscape 
indicators to assess land change (Shao and Wu 2008).

2.4.  Change characterization approach

To achieve the overall aim of the study, we pursued the following major steps. (1) First, we detected 
changes using the two LULC maps and translated the changes detected at pixel level to a more aggre-
gated level using a neighbourhood approach and repeating the procedure with differently sized moving 
windows. (2) Next, we compared the neighbourhood-level information with the pixel-level informa-
tion in terms of its potential to characterize land change processes across large and complex areas. 
(3) Then, we reclassified the full data range on the amount of change into five percentage ranges. (4) 
After this, we assessed the effect of the moving window size on the resulting amounts and patterns 
of change. (5) Further, we assessed the effect of the moving window size by comparing the mapping 
results with known changes on the ground. This helped us to understand how the moving window 
size affects the results on change processes of varying type, size and density). (6) Finally, based on the 
findings, we determined a way of selecting an optimal moving window size. Figure 3 shows a sche-
matic representation of these steps. The detailed procedures involved in the approach are described 
in the following subsections.

Figure 2. LULC maps used for the present assessment.
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2.4.1.  Detecting changes at pixel level and translating them to the neighbourhood level
As explained in the introduction, this paper strives to establish an improved methodology for char-
acterizing land change at national, supranational and continental scales using LULC maps produced 
from moderate-resolution satellite images. Use of pixel-level change data to present change at national 
to continental scales is problematic, as it results in poor visibility of patterns, and metrics are not 
generated at the required scale (Lamine et al. 2017; Singh Srivastava, et al. 2017). To produce a change 
map that decision-makers can easily interpret, we aimed to translate pixel-level change information 
to a more aggregated level. Researchers in the field recommend using a neighbourhood approach to 
do this (Riitters, Wickham J et al. 2009). Spatial neighbourhood can be analysed with a moving win-
dow technique, and the size of the window can be chosen depending on the extent at which changes 
occurred, the extent of the study area and the objective of change characterization (Messerli et al. 
2009; Hett et al. 2012; Hurni et al. 2013). According to Riitters, Wickham J et al. (2009), the size of the 
moving window must be larger than the spatial resolution of the input LULC map. In our case, this 
implied that the moving window would have to be larger than 30  by 30 m (1 by 1 pixel).

However, if the goal is to visualize change patterns at regional and national scales, a much larger 
window is required anyway; initial test runs showed that applying moving window sizes of less than 
1 by 1 km (33 by 33 pixels) result in a change map that is not much different in appearance from the 
original pixel-level change map. Thus, to be able to compare the effect of the moving window size, we 
applied the following sizes: 1 by 1 km (33 by 33 pixels), 2 by 2 km (67 by 67 pixels), 3 by 3 km (100 
by 100 pixels), 4 by 4 km (133 by 133 pixels), 5 by 5 km (167 by 167 pixels), 6 by 6 km (200 by 200 
pixels), 7 by 7 km (233 by 233 pixels), 8 by 8 km (267 by 267 pixels), 9 by 9 km (300 by 300 pixels) 
and 10 by 10 km (333 by 333 pixels).

Initially, we detected changes at the pixel level by combining the two LULC maps (showing the 
years 1986 and 2010) using the combine tool in ArcGIS® software. This resulted in a single binary 
raster map with the value ‘0’ representing unchanged pixels and ‘1’ representing changed pixels. To 

Figure 3. Schematic representation of the workflow.
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translate the pixel-level change information to the neighbourhood level, using the summation operator 
we applied the square moving window-based focal statistics analysis available in ArcGIS 10.1®. This 
was performed using 10 different moving window sizes (1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 km). The focal 
statistics algorithm produced 10 separate raster files – one for each moving window size – represent-
ing LULC changes at the neighbourhood level, with values expressing the number of changed pixels 
per window (Equation (1)). Further, using Equation (2), we converted the raster values from pixel 
counts to percentages (ranging from 0 to 100%) in order to better understand the effect of the moving 
window size (see Section 2.4.2). This resulted in an output representing the percentage of changed 
pixels per window (Equation (2)). We call this the ‘amount of change’. When visualized as a map, this 
information provides the spatial arrangement of changes estimated by the moving window (Figures 
4 and 5). We call this ‘patterns of change’ (Equation (3)).

 

 

 

(1)Cn =

Np

MW

(2)Cp =

Acp

MW
× 100

(3)
CC =

ACcc

TAss

× 100

Figure 4. Translating pixel-level change information to the neighbourhood level in order to better characterize change across large 
and complex areas.
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where MW = Moving window size (side length in pixels); Np = Number of changed pixels per win-
dow; Acp = Total area of changed pixels per window; Cn = Change at neighbourhood level (number 
of pixels); Cp = Change at neighbourhood level (percentage); CC = Change category-based statistics 
(change in per cent); ACcc = Amount of change per change category in per cent; TAss = Total area of 
study site.

2.4.2.  Comparing pixel- and neighbourhood-level change information
In view of our overall goal of characterizing change across large and complex areas, we compared 
pixel- and neighbourhood-level change information based on the following three criteria: (1) ability 
to illustrate patterns of change in time and space; (2) ability to improve the signal-to-noise ratio 
or cancel out the unbiased classification error retained in the change map, and thereby to reduce 
reporting of unrealistic changes; and (3) ability to depict the degree of change in relative terms. We 
presumed that these criteria are suited to reveal the potential and limitations of the proposed approach.  
Figure 4 illustrates the visual effects of translating pixel-level change information to a neighbourhood 
level, using the examples of two patches of 10 by 10 km showing different change characteristics from 
the study area.

Figure 5. Pixel-level vs. neighbourhood-level spatial representation of LULC change.
Notes: The maps in the first column depict change at the pixel level across each of the four study sites, whereas the other three columns represent 
patterns of change produced at the neighbourhood level using a 1-, a 5- and a 10-km moving window. The intensity of the shading represents the 
amount of change in per cent, from low (0) to high (100).
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The maps on the left in Figure 4 show changes at the pixel level, overlaid with the different moving 
window sizes of a 1- and a 10-km side length. Black spots represent changed pixels and white spots 
unchanged pixels. The maps in the middle and on the right represent changes at the neighbourhood 
level produced by applying a 1- and a 10-km moving window, respectively, to the pixel-level infor-
mation. In these maps, the intensity of shading represents the degree of change with a spatial pattern 
of change. White areas have undergone no or slight change, whereas deep black areas have changed 
substantially. Below, we compare the information content of neighbourhood-level maps with that of 
pixel-level maps, as well as that of the various neighbourhood-level maps resulting from different 
moving window sizes, according to the criteria outlined above.

(1) � Potential for representing spatial patterns of change: As pixel-level change information is dis-
crete, spatial patterns of change and no change are poorly represented (Figure 4, left). This 
is particularly problematic in cases where small-sized changes are largely ignored due to the 
limited spatial resolution of the input data, or where important changes are missed in the 
change map due to classification errors.

Figures 4 and 5 show visibly that unlike the pixel-level change map, the neighbourhood-level map 
displays change information in a continuous manner that accounts both for large or small and for 
sparse or dense changes. In other words, the output change map shows spatial patterns of change 
based on the density of change within a neighbourhood of pixels, whereas pixel-level maps fail to 
do so (White 2006). This makes neighbourhood-level change information preferable for visualizing 
patterns of change across large and complex areas. However, patterns of change risk not being prop-
erly represented if changes occur at a small spatial extent and the moving window used is too large.

Figure 6. Histogram values of neighbourhood-level amounts of change across each of the four study sites obtained using a 1-, a 
5- and a 10-km moving window.
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(2) � Potential for avoiding wrong representation of change: In the pixel-level change information 
(Figure 4), a considerable area appears white, signifying ‘no change’. However, it is hard to be 
sure that these areas really remained unchanged. There are three possibilities: Change may 
have occurred, but the limited resolution of the input data does not allow very small changes 
to be captured; the classifier did not capture these changes due to unbiased classification error; 
or there was really no change in these areas and the change detection is accurate. Further, 
the pixel-level maps show numerous isolated black pixels, signifying change. They might be 
salt-and-pepper noise due either to the unbiased classification error or to noise in the satellite 
image retained in the change map; or they might represent real changes affecting only very 
small areas. This type of change information will affect change statistics if it is removed or 
considered as is in the change map (Riitters, Wickham JD et al. 2009). As changes at the pixel 
level are reported in discrete statistics, the above cases will exist in the change map as well as 
the statistics. In such a situation, a moving window technique can be used to produce a new 
change map and reduce these potential errors commonly manifested in pixel-level change 
maps. We hypothesized that translating pixel-level change information to the neighbourhood 
level will reduce the risk of mapping erroneous changes or ambiguous change information, as 
the moving window approach produces a new data-set of change information that considers 
the state of several neighbouring pixels (Riitters, Wickham JD et al. 2009). If, in a given area 
on the pixel-level map, few pixels have wrong change information, while the majority of the 
pixels have correct change information, the moving window will prevent the error pixels from 
being visualized on the new change map, as this map considers both the individual pixel and 
its neighbouring pixels. In other words, the new data-set consists of continuous information 
that makes it possible to explain change in relative terms and thereby avoid discretely pre-
senting changes of which we are not sure.

(3) � Potential for describing the amount of change as per users’ interest: The pixel-level change 
information offers a discrete and lumped statistical change value per a given area, and describ-
ing change in relative terms according to users’ interest is not possible. Figure 6 shows the 
histogram values of the amounts of change in the four study sites obtained when using a 1-, 
a 5- and a 10-km moving window. Using the histogram values of change information, it is 
possible to compare and describe amounts of change within and across study sites. Moreover, 
the approach makes it possible to reproduce ranges of change statistics that can be categorized 
and summarized depending on users’ interest (Gagn and Fahrig 2007). It provides the option 
of expressing change in relative terms, whereas pixel-level change information fails to do so 
(Netzel and Stepinski 2015). However, this makes it necessary to classify the continuous data 
into categories as desired by users.

2.4.3.  Reclassifying the neighbourhood-level change data
The outputs of our approach, as presented in Figures 4–6, display change information on a continu-
ous scale of 0–100%. We reclassified this continuous change information into categories in order to 
simplify the interpretation of change across large areas and make the information more usable for 
planning, and to enable more objective, standardized and comparable assessment of the effect of the 
moving window size on the output.

To reclassify our continuous data, we defined five categories that describe the degree of change 
qualitatively as: No change, Slight change, Moderate change, Considerable change and Substantial 
change. Then, we reclassified the neighbourhood-level change data (with values ranging from 0 to 
100) into these five categories. Appropriate break points were identified using the Jenks optimization 
method or natural breaks available in ArcGIS®. The Jenks method finds points that minimize the sum 
of squared differences within classes and maximize the sum of squared differences between classes. 
More specifically, it minimizes within-class variances and maximizes variances between classes. We 
chose this technique because of its capability to identify meaningful classes in the data. The resulting 
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classes are: 0–10% representing no change; 10–25% representing slight change; 25–50% representing 
moderate change, 50–75% representing high change and >75% representing substantial change. Based 
on these categories, we further assessed the effect of the moving window size by comparing statistics 
and maps generated with varying window sizes for each of the study sites.

2.4.4.  Understanding the effect of the moving window size
The translation of pixel-level change information to the neighbourhood level is scale-dependent (Cain 
et al. 1997; Saura and Martinez-mlian 2001; Wu 2004). When applying this method across large and 
complex areas, the main challenge is to find an appropriate moving window size. Applying a single 
window size across the entire study area can cause important, but small-sized change patterns to be 
lost, as the method generalizes the information content. However, applying arbitrarily chosen different 
moving window sizes is no solution either, as it will result in varying amounts and patterns of change, 
and results will not be easily comparable. Selecting an optimal moving window size requires knowledge 
about how the moving window size affects the output and about the type and spatial extent of the object 
or feature to be characterized. For that reason, we assessed the effect of the moving window size on 
the two main neighbourhood-level outputs, patterns of change and amount of change. The assessment 
was performed in two ways: considering the whole study sites, and considering systematically selected 
smaller verification sites where important features to be characterized are clearly observed both in the 
input image and in the final change map. As explained earlier, the full range of information is difficult 
to compare; for that reason, we used the reclassified data.

(1) � Looking at the entire study sites: To understand the effect of the window size on the amount 
of change, we summarized the overall statistics (amount of change) estimated with each win-
dow size using Equation (3). We compared the outputs generated with the different moving 
window sizes graphically for each change category (see Section 3.1).

(2) � Looking at systematically selected verification sites: To understand the effect of the moving 
window size on the spatial arrangement of changes as well as their type, size and density, we 
visually compared the patterns of change resulting from each moving window size with known 
real changes having a clear pattern. To do that, we systematically selected nine representative 
verification sites (Figure 1) showing clearly observable changes. The verification sites cover a 
minimum of 10 by 10 km each; their sizes vary depending on the size of the feature selected 
for verification. The type, size and density of changes at the verification sites were identified 
by means of field visits, Google Earth images and information from locals. Subsequently, we 
applied all the procedures explained in Sections 2.4.1 and 2.4.3. Further, we investigated in 
detail the nature of changes in each sub-ecoregion. Reviewing secondary literature on bio-
physical and socio-economic processes helped us to understand the spatial link between the 
type, size and density of changes and the amount of change found at the neighbourhood level 
in each sub-ecoregion. Specifically, to understand the variation in neighbourhood-level esti-
mates produced with differently sized moving windows, we produced false colour composite 
maps from the Landsat images of 1986 and 2010 for each verification site (see Section 3.2). 
The neighbourhood-level patterns of change obtained with differently sized moving windows 
were compared against the spatial arrangement of real changes identified in the false colour 
composite images. This provided information about the magnitude of over- and underesti-
mation resulting from different moving window sizes (Figure 4), an important criterion for 
selecting an optimal moving window size.

2.5.  Selecting an optimal moving window size

The literature offers no established method for finding the most appropriate moving window size 
for a given area (Wu 2004). This may be because the optimal moving window size depends on the 
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purpose of the study and the study area context (Riitters, Wickham JD et al. 2009). In Section 2.4.4, 
we described our own approach to determining the optimal moving window size, based on com-
parisons considering the entire study sites and a number of smaller verification sites. In addition, 
we also applied a selection technique that uses statistical information obtained from sample points. 
For that purpose, we generated 100 sample points from the selected study sites. Half of them were 
selected randomly and half systematically, so as to ensure that all sub-ecoregions in each study site 
were adequately represented. This was important because the types, size and density of changes differ 
considerably between (sub-)ecoregions, and at the same time these change characteristics are among 
the factors determining which moving window size is most appropriate. Subsequently, we extracted 
the percentage values of each point for the 10 neighbourhood-level change raster datasets produced 
with the differently sized moving windows. We assessed whether a meaningful relationship existed 
between moving window size and the values of the sample points. We used the standard deviation 
values of the sample points for each moving window size, so as to understand the degree of over- or 
underestimation. This analysis was supported by diagrams showing the moving window sizes on the 
x-axis and the sample point values on the y-axis (see Section 3.2). On this basis, we determined which 
moving window size results in the most meaningful representation of change for a given size of the 
feature or object to be detected and characterized. Finally, from our experience we derived suggestions 
on how to select the optimal moving window size and a number of issues to consider when applying 
our approach to characterize land change across large and heterogeneous areas.

3.  Results

3.1.  Effect of the moving window size

Assessment of how the size of the moving window influences the two main outputs of the presented 
approach – amount of change and patterns of change – helped us to determine which moving window 
size is most appropriate. The following subsections present the results of this assessment.

3.1.1.  The effect of the moving window size on patterns of change
The maps presented in Figure 7 show how the size of the moving window affects the spatial arrange-
ment of estimated changes. As shown in the maps, different moving window sizes lead to different 
change patterns.

Figure 7 shows that an increase in the size of the moving window gradually causes changes of 
small spatial extent to disappear, whereas larger sized changes seem to grow. Further, we can see that 
patterns of change vary most between moving window sizes in areas where changes are small in size. 
For instance, in Study Site IV, a fairly large area falls into change category 5 when a 1-km moving 
window is applied. However, when we applied a 10-km moving window, the majority of the area fell 
into category 4. When characterizing land changes at the neighbourhood level, such generalization 
has both advantages and disadvantages: a larger moving window improves the signal-to-noise ratio 
and reduces classification errors, but at the same time generalizes the change information, and there is 
a risk of missing changes affecting only very small areas. This implies that the moving window should 
be set to an optimal size at which accurately detected small-sized changes which are of interest in the 
given study remain visible on the output map.

3.1.2.  The effect of the moving window size on amounts of change
The connection between the effect of the moving window size and patterns or the amount of change 
looks fairly trivial compared to the effect on the amount of change and for a specific type of change. 
How the effect of the moving window size changes depending on the type of change that we intend 
to capture (e.g. deforestation) is more complex and significant. Figure 8 shows how the total amount 
of change in the change maps of the two cases illustrated in Figure 4. It visualizes how much the total 
amount of change varies for a particular point of interest when a different window size is applied.
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Figure 9 shows how the size of the moving window affects the total amount of change per study 
site. The statistics were generated from the maps displayed in Figure 7. The four study sites differ in 
terms of the type, size and density of changes. The x-axis shows the five change categories based on 
the amount of change (0–10, 10–25, 25–50, 50–75 and >75%). The y-axis shows the total area covered 
by each change category as a percentage of the total area of the study site.

The diagrams in Figure 9 show how the amount of change varies when different moving window 
sizes are applied. For example, in Study Site I, a 1-km moving window estimated the total area falling 

Figure 7. Patterns of change in the four study sites at the neighbourhood level generated with five differently sized moving windows.

Figure 8. Effect of the moving window size on the estimated amount of change for the two cases mapped in Figure 4.
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into change category 3 at about 41% of the study site area. When a 5-km window was applied, the total 
area falling into the same change category rose to 49%. If we take another case, Study Site III, when a 
1-km window was applied, the total area falling into change category 5 was estimated at 8%, whereas 
it dropped significantly to 0.2% when a 10-km window was applied.

3.1.3.  The effect of the moving window size: conclusions from the assessment
In sum, the assessment results presented in Sections 3.1.1 and 3.1.2 revealed the risk of over- or 
underestimation of change as well as inadequate representation of patterns of change if a single and 
unrepresentative moving window size is randomly chosen. Table S1 in the Supplemental Material 
presents a detailed statistical summary on the effect of the moving window size on the output values 
for selected sample points in each study site. These statistics show that proper characterization of land 
change requires proper understanding of the effect of the moving window size on the patterns and 
amount of change, taking into account the type, size and density of the change phenomenon to be 
characterized. Therefore, it was of paramount importance to verify the effect against reality based on 
known changes at sample points across all study sites and (sub-)ecoregions.

3.2.  Verifying the effect of the moving window size against known changes

The assessment results presented in the above sections demonstrated the overall variation in present-
ing the amount and patterns using differently sized moving windows for the entire study area. But 
the variation is not the same in all parts of large and complex areas, as the nature of changes varies 
considerably. This required us to investigate in which part of the larger study area and for which types 
of change the variation is significant.

To verify the patterns of change generated with differently sized moving windows, we used raw 
Landsat TM images with false colour composite (4-3-2). The information mapped in Figure 10 depicts 

Figure 9. Summary of statistical data on the amount of change estimated with differently sized moving windows for each study site.
Note: The x-axis represents the five change categories; the y-axis represents the proportional area coverage of each change category as estimated 
using five different moving window sizes.
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the nature of land changes (in terms of type, size and density) occurring in the different (sub-)ecore-
gions across the UENB (see Figure 1). From the maps it is possible to understand and compare 
whether spatially aggregated change patterns are adequately represented, and which moving window 
size results in the most accurate representation of known patterns of change. The purpose of change 
characterization is a key factor determining which representation is most meaningful. However, as 
Figure 10 shows, the spatial representations of the same type of change using differently sized moving 
windows varies significantly from one site to the next.

For example, in Verification Site 4 (which represents Study Site II), the majority of changes are 
small in size, indicating smallholder plantations of about 0.25–1 hectare. The patterns of such changes 
are retained using a smaller moving window (1 km). The larger the moving window, the poorer the 
visibility of these small patterns of change becomes; they disappear completely when a 5-km moving 
window is applied. In Verification Site 7 (sub-ecoregion 3c), the spatial arrangement of change arising 
from the construction of a dam is well represented by moving windows of 1–4 km. But when a 5-km 
moving window is applied, the pattern of change becomes highly degraded. These examples show 
that the degree of variance in the spatial representation of changes is linked with the spatial extent of 
the changed features as well as with the overall spatial distribution and density of changes in a given 
area. Table 2 summarizes the nature of changes commonly occurring in the five major ecoregions of 
the UENB (see Table 1). For a better understanding of the effect of the moving window size and the 
usefulness of the proposed approach, an additional analysis using high-resolution images is provided 
in Figure S1 (Supplemental Material).

In intensively cultivated ecoregions (represented by Study Site II in sub-ecoregions 3a, 3b and 
3c), afforestation practices, communal area closures and rehabilitation of degraded areas are very 
common. In these parts, of the study area, the majority of changes are as small as 0.25 hectare due to 
the size of individual landholdings (~10,000 m2) (see Figure 10, verification sites 3 and 4). In these 
areas, moving windows larger than 3 km fail to adequately represent patterns of change. By contrast, 
in the low-lying areas of the UENB, over the last two decades, large-scale mechanized farming as well 
as smallholder-driven slash-and-burn practices have become common, and as a result, land changes 

Figure 10. Verification sites that reveal the varying nature of land changes across the UENB.
Note: They were selected based on false colour composites of the Landsat images to verify the effect of the moving window size.
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span hundreds of hectares on average. In these areas, moving windows of up to 5 km still adequately 
retain change patterns (verification site 8, Figure 10). Here too, however, moving window sizes larger 
than 5 km no longer adequately represent land changes at least for the area we considered.

3.3.  Selecting an optimal moving window size

The results of our verification exercise presented in the previous sections enabled us to gain a more 
comprehensive understanding of how the size of the moving window affects mapping outputs, and 
provided a basis for determining the optimal moving window size for the purpose of our study. A 
further analysis based on statistical evaluations of sample points provided further guidance regarding 
the optimal moving window size. We used two sets of sample points; 50 points were selected randomly, 
and another 50 were selected systematically.

Table 2. The nature of land changes commonly occurring in the major ecoregions of the UENB.

Ecoregion code
Study sites in this 

ecoregion
Dominant land 

cover Farming system

Important change 
processes and 

drivers
Size and density 

of changes
1 IV Forest and agrofor-

estry
Mixed farming, 

but largely 
forestry 

Forest degradation 
and deforestation

Small and unper-
ceivable 

2 II and IV Intensively culti-
vated land, high 
potential 

Crop growers and 
mixed farming

Afforestation and 
deforestation 

Small and dense 

3 II Moderately culti-
vated land, low 
potential

Mixed farming Afforestation, 
grassland to 
cropland con-
version 

Small and sparse

4 I and III Woodland, grass-
land

Agro-pastoralist Deforestation and 
natural regener-
ation

Large and dense 

5 III Woodland Pure pastoralist Forest degradation, 
deforestation 
and natural 
regeneration 

Large and dense

Figure 11. The magnitude of variation in the amount of change observed when applying different moving window sizes (for randomly 
selected points).
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(1) � Randomly selected sample points: Figure 11 shows the amounts of change generated for ran-
domly selected sample points. Each line represents a sample point, the x-axis represents the 
size of the moving window and the y-axis represents the amount of change obtained for each 
sample point. The diagram shows that the magnitude of variance when applying different 
moving window sizes varies from study site to study site and depending on the amount of 
change (Figure 11).

As shown in Figure 11, the amount of change obtained from randomly selected points in each study 
area shows no predictable trend when the moving window size is increased. This means that both 
over- and underestimations occur in all study sites. As the variation is unpredictable, we were unable 
to find an optimal window size for an entire study site falling into several ecoregions. However, we 
noticed that the variation tends to be similar for sample points representing the same change category 
and the same sub-ecoregion. Thus, regrouping the sample points based on homogeneity in terms of 
the nature of changes (within a specific sub-ecoregion) can simplify the selection of an appropriate 
moving window size.

(2) � Systematically selected sample points: Figure 12 shows the amount of change generated for 
systematically selected sample points. The amount of change obtained for systematically 
selected sample points in the same sub-ecoregion as well as within a defined change category 
showed predictable relationships with the size of the moving window, at least for the scale 
ranges we considered.

The sample points were used not only to verify and understand the effect of moving window size 
on the amount and patterns of change, but also to select the optimal moving window size for each 
sub-ecoregion. As explained in Section 2.1, each study site falls into several different ecoregions and 
sub-ecoregions. The identified (sub-)ecoregions differ in terms of the nature of changes occurring in 
them. As the type, size and density of the changes to be characterized are key factors determining which 
moving window size is most appropriate, systematically selecting verification sample points within or 
across the different sub-ecoregions can show the level of variations in terms of adequately depicting 
change when using larger or smaller window sizes. Such comparison can then be used to determine 
the most adequate moving window size in relation to the type, size and density of changes occurring 
in the area of interest. In our case, we defined the optimal moving window size as that which produces 
the smallest standard deviation across all sample point values. A moving window meeting this criterion 

Figure 12.  The magnitude of variation in the amount of change observed when applying different moving window sizes (for 
systematically selected points).
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results in minimal over- and underestimation in the sub-ecoregion for which it was deemed optimal. 
This is shown in Figure 12, where the lines of the sample points are close (asymptotic) to each other.

4.  Discussion

Often land change characterization using remotely sensed data is done by measuring the degree of 
change and locating changes using statistics and maps, respectively. Commonly, this is done using pix-
el-level change information (statistics and maps) generated at the post-classification stage (Pontius and 
Cheuk 2006). However, pixel-level change information has several limitations. Among other things, it 
cannot be used to represent the spatial configuration and composition of changes per a defined area. As 
our aim was to demonstrate the usefulness of our approach with regard to characterizing land change 
across large and heterogeneous areas, we used real multi-temporal LULC data covering a large area 
that are suitable for demonstrating the aforementioned limitation of pixel-level change information. 
The approach we propose requires translating pixel-level change information to a more aggregated 
level using an optimally sized moving window. However, based on the results of our assessment, sev-
eral issues need to be taken into account when applying the approach. These include, first, the detail 
and accuracy of the LULC input data (Shao and Wu 2008); second, the aim of the analysis (i.e. which 
change phenomenon is to be characterized); third, the type, size and density of changes; and fourth, 
the size of the moving window (Homer et al. 2004). Besides, the approach requires detailed verifica-
tion of detected changes. The main focus of the present study was on the fourth issue that needs to be 
considered: on how the size of the moving window affects the outputs obtained.

Previous studies have demonstrated that approaches such as ours are sensitive to the spatial reso-
lution of the input data and the size of the moving window applied (Shao and Wu 2008). Therefore, 
authors suggest that it is vital before applying such an approach to make sure that the spatial reso-
lution of the satellite images used to develop the multi-temporal LULC maps are adequate in view 
of the features to be characterized (Griffith 2004; Riitters, Wickham J et al. 2009). The composition 
and visibility of the patterns of change obtained using the moving window approach are primarily 
determined by the resolution of the input data (Saura 2002). In other words, the quality and resolution 
of the input data largely determines the size of detectable features. Various authors also suggest that 
the nature of change processes occurring in the study area is likewise an important factor, making it 
essential to know the possible spatial extent of the changes and changed features to be characterized 
(Wu 2004; Riitters, Wickham JD et al. 2009; Hett et al. 2012; Hurni et al. 2013). On the other hand, 
when translating pixel-level change information to a more aggregated level using a moving window 
approach, we need to be sure that the size of the moving window is chosen so that the output adequately 
represents the area in which land cover changes related to land use have been occurring (Messerli 
et al. 2009; Hurni et al. 2013). According to Riitters, Wickham J et al. (2009), the size of the moving 
window is determined by the size of the object or feature to be detected. But, at the same time, the size 
of the moving window cannot be smaller than the pixel size of the LULC maps used for the analysis 
(Riitters, Wickham JD et al. 2009). In situations where the spatial extent of deforestation and affores-
tation phenomena varies across the study area – as it does in our study area, the UENB – the size of 
the moving window needs to be selected considering both the nature of the prevailing changes and 
their extent of occurrence (Wu 2004). In the present study, we thoroughly assessed all these factors 
to select the optimal moving window size, keeping in mind the overall aim of characterizing LULC 
change across a large and heterogeneous study area using the proposed approach.

The overall assessment results regarding the type (deforestation and afforestation) and spatial extent 
of commonly occurring changes (from 0.25 to 10,000 hectares) enabled us to narrow down the range 
of potentially suitable moving window sizes (1–10 km). But in order to select the optimal moving 
window size according to the aim of the study or the common land change processes to be charac-
terized, we had to make a further detailed assessment (Wu 2004; Riitters, Wickham J et al. 2009). We 
performed a detailed evaluation of the effect of the moving window size by comparing output results 
with known changes of varying spatial extent in nine selected verification sites. The overall assessment 
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helped us to understand how the moving window size affects the degree of over- and underestimation 
of change. The assessment based on the verification sites provided guidance on how the effect of the 
moving window size varies depending on the spatial extent, amount and patterns of change. A further 
assessment using 50 randomly selected and 50 systematically selected sample points finally enabled 
us to determine which moving window size is optimal for which type of change, in which part of 
the study area. Based on our overall findings, we tried to establish a general procedure for selecting 
the optimal moving window size for translating pixel-level change information to a more aggregated 
level for change estimation and characterization across a large and complex area. We concluded that 
an optimal moving window size can be determined only for partial areas within the study area where 
changes are similar in nature.

In our case of the UENB, we found moving window sizes larger than 5 km unsuitable for charac-
terizing change, for two main reasons: (1) In most highland parts of the study area, the majority of 
changes were fairly small in size, causing moving windows larger than 5 km to obscure these changes; 
and (2) in the lowland parts of the study area, many changes are contiguous, causing moving windows 
larger than 5 km to exaggerate them. On this basis, we propose optimal moving window sizes for each 
of the sub-ecoregions in the study area, as follows: In Study Site I and other parts of the UENB with 
similar landscapes, such as the western part of Study Sites III and IV, 4- and 5-km moving windows are 
suited to adequately represent patterns of change. The same moving window sizes can be also applied 
for woodland-dominated areas like sub-ecoregions 4a and 5c, where land cover is rather homoge-
neous and changes are contiguous and affect larger areas. For ecoregions with a finer mosaic of land 
cover types, such as in Study Site II, a smaller moving window of 1 or 2 km is more appropriate, as the 
majority of changes are patchy and affect smaller areas. Forest-dominated ecoregions where change 
processes affect smaller areas (e.g. deforestation in sub-ecoregion 1a and parts of sub-ecoregion 2a, as 
well as afforestation in sub-ecoregions 3b and 3c) require a moderate moving window size of 2 or 3 km.

As shown in Figure 12, in areas where changes are commonly patchy and random and occur at 
a lower density, the amount of change is increasingly underestimated with increasing moving win-
dow size. Conversely, in areas where changes are contiguous, the amount of change is increasingly 
overestimated with increasing moving window size. These predictable relationships were observed 
for systematically selected sample points in similar ecoregions, and they enabled us to identify the 
optimal moving window size for each (sub-)ecoregion.

In sum, based on the results obtained from systematically selected sample points, we can derive 
the following rules of thumb for selecting an optimal moving window size:

(1) � The moving window size must be chosen such that changes of interest occurring at a 
smaller spatial extent are retained and changes of interest occurring at a larger extent are 
not exaggerated.

(2) � An optimal moving window size can only be selected for areas with a homogeneous landscape 
in terms of the type, size and density of changes.

Uncertainties are common in models developed to represent realities, especially models that use 
satellite images as input. In the case of the approach presented in this paper, uncertainties can emanate 
from: (1) errors in the LULC maps; (2) an inappropriate moving window size; (3) reclassification of 
the neighbourhood-level change information. Although the approach could have been explained 
using a fictitious change map, in order to better justify the approach, we used real LULC and change 
maps representing large and complex areas. LULC and change maps covering large and heterogeneous 
areas are particularly susceptible to uncertainties. However, the LULC maps we used were produced 
using an approach particularly suited for mapping large and heterogeneous areas and have an overall 
classification accuracy of more than 87%, which exceeds the recommended minimum accuracy level 
(Foody 2002). Thus, to account for any uncertainties in the approach and results, it is important that 
users consider the accuracy of the LULC maps used and the nature of the changes to be characterized. 
Further uncertainty may arise from the reclassification of the neighbourhood-level change information 

  T. KASSAWMAR ET AL.996



into change categories. The number and definition of these categories depends on users’ preferences, 
and the choice of threshold values influences the outputs to some extent. Finally, as discussed in detail 
in above, uncertainties also exist in the selection of the optimal moving window size.

5.  Conclusions

Based on our assessment results, we conclude that even if translation of pixel-level change information 
to a more aggregated level generalizes the information content, using an optimally sized moving win-
dow it can significantly improve the signal-to-noise ratio retained in the pixel-level change information 
and allows to cancel out unbiased errors. The presented approach makes it possible to express change 
in relative terms, using ranges of change values. This makes the approach useful for characterizing 
LULC change at national or regional levels.

However, we recommend that users should consider the following important issues when applying 
the approach:

(1) � Characterizing LULC change across large and heterogeneous areas using the proposed 
approach requires use of multiple moving window sizes.

(2) � Heterogeneous areas need to be subdivided into smaller areas that are homogeneous in terms 
of the types, size and density of changes occurring in them. The optimal moving window size 
is then determined separately for each of these subareas.

(3) � Prior to characterizing change, the appropriateness of the moving window size must be ver-
ified based on known changes.

(4) � The optimal moving window size should be determined by considering the spatial extent of 
the smallest feature to be characterized, as well as the type and direction of change.

(5) � The approach produces a generalized output with an improved signal-to-noise ratio compared 
to the pixel-level change information. However, large moving window sizes will obscure 
changes of small spatial extent that may be important at the local scale.

In sum, if the approach is applied considering the recommendations presented here, the output 
change maps have the potential to provide a synoptic view of landscape change processes at regional 
and national scales. This will support decision-makers and planners in guiding the implementation of 
sustainable land resources management and rehabilitation endeavours at regional and national scales.
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