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1. Objectives: 

1. Utilize supervised classification algorithms from Scikit-learn and automated ARVI calculations 

of 4-band 1m NAIP imagery to create a reproducible method to classify canopy/forest to aid in 

monitoring deforestation. 

2. Create a Python library designed to optimize classification of raster data in a geospatial setting 

3. If time permits, develop supervised classification algorithm outside of Scikit-learn for method. 

4. Create necessary data to use in mitigating deforestation. 

5. Case study Georgia 

6. Publish paper detailing work 

2. Overview: 

2.1 Background: 

Deforestation monitoring is an essential part of maintaining any environment as the loss 

of forested lands leads to increased CO2 being placed into the atmosphere while simultaneously 

eliminating carbon storage (Bala, Govindasamy, et al. 2007). At smaller scales it leads to both 

increased runoff rates and subsequently increased erosion, especially in areas where no plant 

reclamation is initiated (Benito, E., et al, 2003). Accurately monitoring deforestation to mitigate 

these effects on a large scale can be a time consuming and difficult process to complete (Basu, 

Saikat, et al. 2015). Furthermore, commercial software dedicated to completing these tasks such 

as eCognition (Trimble Inc.) or Textron Systems Feature Analyst (Textron Systems 2010) can be 

expensive with little insight into how their algorithms are truly working as they are closed source. 

The lack of knowledge into the inner workings of commercial software leads to the consideration 

of applying any number of existing open source libraries (Sonnenburg 2007). Contrasting with 

closed source software, open source work allows for the collaboration and modification of 

projects between others to serve different needs and purposes, and subsequently allows for 

transparency in research that leads to increased reproducibility and access (Sonnenburg 2007). 

Previous studies have utilized open source libraries such as Keras-TensorFlow, PyTorch, 

and the Orfeo Toolbox API [Application programming interface] for landcover classification and 

deforestation monitoring (Abujayyab & Karaş 2019, Anh et al. 2019, Rakshit et al. 2018, Grings 

et al. 2019). However, not much research has extensively utilized Scikit-learn. One study has 

used Scikit-learn for deforestation monitoring in which a committee system was developed using 

Scikit-learns k-Nearest Neighbors, linear Discriminant and Multi-layer perceptron (Dallaqua et al. 

2018). The committee method however is not paired with a reproducible method that can be made 

scalable. Other research utilizing Scikit-learn has used Scikit-learn algorithms, logistic regression 

and support vector machines [SVM], as baselines or for comparing with other developed machine 

learning algorithms, but again no method for scalable reproducibility was applied (Šimić de 

Torres 2016, He et al. 2017, Ortega et al. 2019).  



Scikit-learn is built on top of NumPy (van der Walt et al. 2011) and SciPy (Vertanen et 

al. 2019), two extensive Python libraries which are easy to utilize (Pedregosa et al. 2011) and will 

subsequently allow for the optimization of raster analysis using GDAL, a Python library used for 

geospatial data processing (Warmerdam 2008) While other open source packages like PyTorch 

and TensorFlow have faster computing times due to their ability to run parallel on graphics 

processing units [GPU] opposed to the central processing unit [CPU] ,  Scikit-learn is only 

capable of parallel computation on CPU’s. However, PyTorch and TensorFlow are currently only 

capable of GPU parallel computation on Nvidia brand GPU’s as they are built around Nvidia's 

proprietary parallel computing platform (GPU Support | TensorFlow 2020, CUDA Semantics – 

PyTorch 2019), called Compute Unified Device Architecture [CUDA] (Nickolls 2008). The use 

of CUDA in other Machine Learning packages effectively eliminates other graphics cards such as 

those produced by Intel or AMD and would be counterproductive to the aim of producing a 

reproduceable open source classification system capable of utilization regardless of hardware 

(Nickolls 2008).  In another effort to increase computing times Scikit-learn is also built utilizing 

Cython, allowing it to reach performance levels of compiled languages (Pedregosa et al. 2011, 

Behnel 2011). Additionally, the thorough documentation Scikit-learn possesses along with its 

extensive supervised algorithms makes it an ideal choice for creating a process that can be 

repeatable and reproducible (Pedregosa et al. 2011). 

Studies in the past which utilize open source classification libraries have also not been 

able to achieve accuracy at a level which 1-meter NAIP [National Agricultural Imagery Program] 

imagery can provide, having been limited to using only public access imagery such as Landsat-8 

which consists of 30-meter resolution bands or MODIS which contains resolutions ranging from 

250 meters to 1,000 meters (Šimić de Torres 2016, Dallaqua et al. 2018). Even though NAIP 

imagery is on a 3-year cycle and cannot match the temporal frequency in which satellite imagery 

is taken, NAIP imagery is taken during seasons in which agriculture is growing in the United 

States ensuring similar characteristics between datasets (NAIP 2009, NAIP Imagery 2019). 

Furthermore, clouds masks will not be needed for processing as NAIP imagery’s quality control 

removes any image that has more than 10% cloud cover per quarter quad rendering the need for a 

cloud mask negligible (NAIP 2009, NAIP Imagery 2019). 

 The availability of 4 band NAIP datasets containing red, green, blue, and near infrared 

bands allows for the creation of an efficient automated process to calculate vegetation indices 

which will then be fed into the supervised classification algorithm (USDA, 2009). The lack of 

clouds mentioned previously in NAIP imagery will also remove issues previous studies had with 

utilizing vegetation indexes as the presence of clouds would render the index increasingly 

unreliable the more cloud cover the scene contained (Li et al. 2004).  The vegetation index chosen 

to use is the atmospherically resistant vegetation index [ARVI] (Kaufman & Tanre 1992)(Figure 

1.) which was chosen over other vegetation indices such as the Normalized Difference Vegetation 

Index [NDVI] (Tucker 1979) or the Enhanced Vegetation Index [EVI] (Jiang et al. 2007) as the 

ARVI corrects atmospheric scattering and has been shown to perform better than other vegetation 

indices. (Liu et al. 2004)  

Figure 1. 

 



To supplement the ARVI, the use of the visible atmospheric resistant index [VARI] 

(Figure 2.) will be explored (Gitelson et al. 2002). The VARI only uses the bands of the visible 

spectrum which enables it to be used with imagery containing only three bands, and like the 

ARVI looks to mitigate atmospheric effects (Gitelson et al. 2002). If the performance of the 

VARI is at an acceptable level, then it will allow for areas which may not have access to high 

quality four band imagery to be properly monitored, and for the use of 3 band NAIP imagery 

which is easier to acquire. 

 

                Figure 2. 

 

Previous research has not effectively published a reproduceable and inexpensive method 

for deforestation monitoring as researchers often do not make available the framework with 

which the research was conducted (Sonnenburg 2007). The goal of the proposed research, 

however, is to create a process that can be repeated to effectively monitor deforestation. With the 

benefits NAIP imagery possess combined with the effectiveness of Scikit-learn a dedicated 

remote sensing method can be developed to solve these issues.  

 

2.2 Process/Method: 

What is proposed is a fully open source supervised classification system designed 

specifically to create an efficient canopy/forest classification system using NAIP imagery. The 

process will involve automating ARVI or VARI calculations directly from the imagery without 

any preprocessing. Automation will be completed by reading each band as a NumPy array into 

Python using GDAL (GDAL/OGR Contributors 2019). These NumPy arrays will then be fed into 

the calculation to produce the ARVI/VARI raster, which will then be subsequently saved as a 

float32 tiff. The output tiff files will be what is classified by the supervised classification 

algorithm. Early calculations of individual ARVI/VARI raster’s on Landsat-8 raster images are 

taking an average of 4 seconds to compute, so the computation time of each NAIP quarter quad 

will be significantly shorter as Landsat-8 scenes are considerably larger than the 3.75’ x 3.75’ 

NAIP tiles (NAIP Imagery 2020).  

Training data will then be created in an open source geospatial software, Quantum GIS 

[QGIS] (QGIS Development Team 2020) and consist of two classes. Class zero being non tree, 

and class one being trees. The training data will then read by GDAL, rasterized and then 

converted into a NumPy array which will be used to develop training labels in the Scikit-learn 

algorithm. 

 Scikit-learn models will be trained and a baseline for number of samples needed will be 

determined in order to aid in future use. After training models and gathering baseline data of 

performance and accuracy, the best performing model will be chosen. A key factor considered 

when choosing models will be their ability to run parallel on the CPU. 

Using the chosen Scikit-learn model a Python library will be created to combine the 

raster classification and supervised learning into one process. The combined process will firstly 



read the bands of each NAIP quarter quad tile as NumPy arrays and perform the required index 

calculations. The resulting index calculations will then be fed into the chosen supervised 

classification model along with the training data. The model will return an accuracy score 

determined either by one of Scikit-learns preexisting score algorithms or by creating a custom 

score function. The model score will allow the user to decide if data needs to be retrained or not.  

Scalability regarding how large of batch sizes are ideal will need to be determined as 

well. Currently, separating the imagery by physiographic region seems to work adequately, but it 

also leads to large differences in processing times between regions. A standardized method not 

reliant upon external geospatial data to equally distribute imagery into batches would be 

preferable but need to be developed. 

 

3. Tentative Timeline: 

  

Month Start 

Date 

End Date Task 

January 1/12/2020 1/19/2020 Planning 

1/12/2020 1/26/2020 Literature review 

1/26/2020 2/2/2020 Automate ARVI & VARI calculations 

February 2/2/2020 3/2/2020 Train Scikit models & Develop scoring system 

March 3/2/2020 3/22/2020 Combine ARVI automation with Scikit model 

3/22/2020 3/29/2020 Compare results with unsupervised class and/or GFC project 

 3/29/2020 4/19/2020 Complete report / Review 

* Weekly meetings every Monday from 11:00am to 12:00pm 
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